11. Brief survey on Hamiltonian
Simulation/ Power of Block
Encoding



Recap

Qubitization is a very flexible modern framework for developing quantum algorithms.

While the unitary encoding we discussed last time is somewhat simplistic, it captures
the essential ideas.

Many of the recent advances in Hamiltonian simulation algorithms use the framework
of qubitization. Improvements were made in SELECT+PREPARE subroutine, which

utilizes the special structure of the Hamiltonian. -
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Hamiltonian Simulation: A brief survey

Cﬂ. Qubitization: The de facto stand
———

2. LCU: Still good for time-dependent simulation
3. Trotter: Recent comeback
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Qubitization

1. Optimal (assuming the block encoding is given as a black box)
2. Practical
3. The standard method of choice for time-independent Hamiltonian simulation

4. Especially good for realistic quantum chemistry Hamiltonians, they outperform the
other methods by a wide margin.



LCU

1. For time-independent Hamiltonians, inferior compared to qubitization.

2. This works best for time-dependent Hamiltonian, e.g., in the interaction picture.
[Kieferova, Schrer, and Berry (2018), Low and Wiebe (2018)]

3. Nearly optimal

4. Realistic gate count estlmate requires a Igt of work in practice.
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Trotter-Suzuki

1. For a very long time, small-scale simulation indicated that Trotter method works
much better than expected. Now this discrepancy is almost resolved. [Childs et al.
(2019)]

—

2. With randomization, the complexity of the Trotter-Suzuki method scales differently.
[Campbell (2018)]




Trotter-Suzuki vs. Qubitization

Qubitization: Cost is essentially determined by SELECT+PREPARE. Both subroutines
scale linearly with the number of terms in the Hamiltonian.

Randomized Trotter-Suzuki: The cost does not scale with the number of terms (but it
does with the absolute sum of Hamiltonian strengths). [Campbell (2018)]
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Beyond Hamiltonian Simulation

We have already discussed the utility of applying a “weird” time evolution, e.g.,

. Examples like this suggest that there is a room to study applications of
“‘unphysical” operators.

Quantum Singular Value Transformation is a flexible framework to explore such

possIbilities.




Quantum Singular Value Transformation

pw= (1 )

We assumed an input model of the following form:
UH)|G) ), = 1G)HIw), +1Gy)

where H is a hermitian matrix. It turns out that many of our conclusion follows even if H is not hermitian.
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U,V Unfeorp Motrteos

Consider an input model O Dirowe]  (Tonnesmebe ) M0t

UA) |Gyl = LG Alw)s + |G s

where A = USVT Using the qubitization technique, we can synthesize A= US\/'f

¥ =1
U(A)IG) It/f> |GYUPSV W)+ 1 Gag P
for certain polynomials P(x) . [Gilyén, Su, Low, and Wiebe (2018)] U p@ vt

This is known as the Quantum Singular Value Transformation (QSVT).



Quantum Singular Value Transformation

QSVT is very powerful. It often leads to simple and efficient quantum algorithms for a

variety of problems. |
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1. Hamiltonian Simulation

2. Applying Al (Moore-Penrose pseudo-inverse)
3. Amplitude amplification

4. Fractional query: applying U% 0 < a < 1, given accessto U .

5. etc... T T~



Block Encoding

QSVT makes quantum algorithm development very simple. If your goal is to apply a
matrix function to a state, i.e., |y) — f(A)|y), you just need to figure out two things.
A

1. How do we encode A into a unitary?
L2. How well can we approximate f(x) by a low-degree polynomial?
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Block Encoding

QSVT makes quantum algorithm development very simple. If your goal is to apply a
matrix function to a state, i.e., |y) — f(A)|y), you just need to figure out two things.

1. How do we encode A into a unitary? case-by-case

2. How well can we approximate f(x) by a low-degree polynomial? (Often) solved



Block Encoding Frameworks

Fortunately, there are already powerful frameworks for block encoding.

1. SELECT + PREPARE: Hamiltonian Simulation

2. Purification of Density Matrix: Machine Learning U:< 6 '. ) 6: pensiq oK

3. Sparse Matrix:ISystems of linear equationsJ Yoo @ poae U M (on
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Block Encoding Arithmetics

Fortunately, there are already powerful frameworks for block encoding.
1. SELECT + PREPARE: Hamiltonian Simulation
2. Purification of Density Matrix: Machine Learning

3. Sparse Matrix: Systems of linear equations

But for your application, maybe none of these will actually work. What to do then?



Block Encoding Arithmetics

There is no general solution to this problem, but there are well-known tricks you can
use. These are all based on block encoding arithmetics.

The moral of the story will be very simple. If you have unitary encodings of
Mou can construct a unitary encoding for any element of the algebra
generated by these matrices.
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Block Encoding Arithmetics

If you have unitary encodings of A;, A,, ..., A,,, you can construct a unitary encoding
for any element of the algebra generated by these matrices.

To prove this claim, what we need to do is very simple. Given unitary encodings of two
matrices A and B, construct a unitary encoding of @A + B for any a, # € Cand also

AB.

—




Scalar multiplication
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Addition
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Mulitiplication

U (A) U(A)
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SELECT + PFEPRPE

A food for thought
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Using the block encoding arithmetics, we can mix these different frameworks.

. . . . A : bood  Hpwiteta
1. SELECT + PREPARE: Hamiltonian Simulation
. . : . . doe peitlon e ety 1O
2. Purification of Density Matrix: Machine Learning
3. Sparse Matrix: Systems of linear equations }_Cfl{‘f A)
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Maybe a new algoritklrgr;( can be developed this way?
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